Reduced frequency of two activating KIR genes in patients with sepsis

Luciana M. Oliveira 1,2*, Pamela Portela 2, Joice Merzoni 2, Jaqueline Beppler 2, Fernando S. Dias 3, Pietra Graebin 4, Clarice S. Alho 4, Gilberto Schwartmann 1,5, Felipe Dal-Pizzol 6,7, Luiz Fernando Jobim 2,5, Mariana Jobim 2, Rafael Roesler 1,8

1 Cancer and Neurobiology Laboratory, Experimental Research Center, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. 2 Immunology Service, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. 3 Intensive Care Unit, Pompéia Hospital, Caxias do Sul, Brazil. 4 Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil. 5 Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. 6 Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil. 7 Intensive Care Unit, São José Hospital, Criciúma, Brazil. 8 Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

OBJECTIVES: Natural killer (NK) cell activity is regulated by activating and inhibitory signals transduced by killer cell immunoglobulin-like receptors (KIR). Diversity in KIR gene repertoire among individuals may affect disease outcome. We examined sixteen KIR genes in a cohort of critical care patients aiming to identify patterns that could be associated with sepsis.

METHODS: Male and female patients (ages range between 14 and 94 years old) were included. DNA samples from 211 patients with sepsis and 60 critical care patients with no sepsis (controls) collected in the period between 2004 and 2010 were included and genotyped for KIR genes using the polymerase chain reaction method with sequence-specific oligonucleotide (PCR-SSO).
RESULTS: There were significantly lower frequencies of activating KIR2DS1 and KIR3DS1 in sepsis patients than in controls (41.23% versus 55.00%, and 36.49% versus 51.67%; $p = 0.041$ and 0.025, respectively). Statistical analysis found no association between individual KIR genes and clinical outcomes, such as organ dysfunction, hospital and ICU stay and/or mortality, or even patient gravity, measured through SOFA-1 and APACHE II.

CONCLUSIONS: These results provide evidence that activating KIR genes 2DS1 and 3DS1 are more prevalent in critical patients without sepsis than in patients with sepsis, suggesting a potential protective role of activating KIR genes in sepsis.